Algebra II Vocabulary Cards Table of Contents

Expressions and Operations
Natural Numbers
Whole Numbers
Integers
Rational Numbers
Irrational Numbers
Real Numbers
Complex Numbers
Complex Number (examples)
Absolute Value
Order of Operations
Expression
Variable
Coefficient
Term
Scientific Notation
Exponential Form
Negative Exponent
Zero Exponent
Product of Powers Property
Power of a Power Property
Power of a Product Property
Quotient of Powers Property
Power of a Quotient Property
Polynomial
Degree of Polynomial
Leading Coefficient
Add Polynomials (group like terms)
Add Polynomials (align like terms)
Subtract Polynomials (group like terms)
Subtract Polynomials (align like terms)
Multiply Polynomials
Multiply Binomials
Multiply Binomials (model)
Multiply Binomials (graphic organizer)
Multiply Binomials (squaring a binomial)
Multiply Binomials (sum and difference)
Factors of a Monomial
Factoring (greatest common factor)
Factoring (perfect square trinomials)
Factoring (difference of squares)
Factoring (sum and difference of cubes)
Difference of Squares (model)

Divide Polynomials (monomial divisor)
Divide Polynomials (binomial divisor)
Prime Polynomial
Square Root
Cube Root
$n^{\text {th }}$ Root
Product Property of Radicals
Quotient Property of Radicals
Zero Product Property
Solutions or Roots
Zeros
x-Intercepts

Equations and Inequalities

Coordinate Plane
Linear Equation
Linear Equation (standard form)
Literal Equation
Vertical Line
Horizontal Line
Quadratic Equation
Quadratic Equation (solve by factoring)
Quadratic Equation (solve by graphing)
Quadratic Equation (number of solutions)
Identity Property of Addition
Inverse Property of Addition
Commutative Property of Addition
Associative Property of Addition
Identity Property of Multiplication
Inverse Property of Multiplication
Commutative Property of Multiplication
Associative Property of Multiplication
Distributive Property
Distributive Property (model)
Multiplicative Property of Zero
Substitution Property
Reflexive Property of Equality
Symmetric Property of Equality
Transitive Property of Equality
Inequality
Graph of an Inequality
Transitive Property for Inequality
Addition/Subtraction Property of Inequality

Multiplication Property of Inequality
Division Property of Inequality
Linear Equation (slope intercept form)
Linear Equation (point-slope form)
Slope
Slope Formula
Slopes of Lines
Perpendicular Lines
Parallel Lines
Mathematical Notation
System of Linear Equations (graphing)
System of Linear Equations (substitution)
System of Linear Equations (elimination)
System of Linear Equations (number of solutions)
System of Linear Equations (linear-quadratic)
Graphing Linear Inequalities
System of Linear Inequalities
Dependent and Independent Variable
Dependent and Independent Variable (application)
Graph of a Quadratic Equation
Quadratic Formula

Relations and Functions

Relations (examples)
Functions (examples)
Function (definition)
Domain
Range
Function Notation
Parent Functions

- Linear, Quadratic
- Absolute Value, Square Root
- Cubic, Cube Root
- Rational
- Exponential, Logarithmic

Transformations of Parent Functions

- Translation
- Reflection
- Dilation

Linear Function (transformational graphing)

- Translation
- Dilation ($\mathrm{m}>0$)
- Dilation/reflection $(\mathrm{m}<0)$

Quadratic Function (transformational graphing)

- Vertical translation
- Dilation ($a>0$)
- Dilation/reflection ($\mathrm{a}<0$)
- Horizontal translation

Inverse of a Function
Discontinuity (asymptotes)
Discontinuity (removable or point)
Direct Variation
Inverse Variation
Joint Variation
Arithmetic Sequence
Geometric Sequence

Probability and Statistics

> Probability

Probability of Independent Events
Probability of Dependent Events
Probability (mutually exclusive)
Fundamental Counting Principle
Permutation
Permutation (formula)
Combination
Combination (formula)
Statistics Notation
Mean
Median
Mode
Box-and-Whisker Plot
Summation
Mean Absolute Deviation
Variance
Standard Deviation (definition)
Standard Deviation (graphic)
z-Score (definition)
z-Score (graphic)
Normal Distribution
Elements within One Standard Deviation of the Mean (graphic)
Scatterplot
Positive Correlation
Negative Correlation
Constant Correlation
No Correlation
Curve of Best Fit (linear/quadratic)
Curve of Best Fit (quadratic/exponential)
Outlier Data (graphic)

Natural Numbers

The set of numbers

1, 2, 3, 4...

Real Numbers

Whole Numbers

The set of numbers $0,1,2,3,4$...

Real Numbers

Integers

The set of numbers
 ...-3, $-2,-1,0,1,2,3 . .$.

Real Numbers

Rational Numbers

Real Numbers

The set of all numbers that can be

 written as the ratio of two integers with a non-zero denominator$$
2 \frac{3}{5}, \quad-5, \quad 0.3, \quad \sqrt{16}, \quad \frac{13}{7}
$$

Irrational Numbers

Real Numbers

The set of all numbers that cannot

 be expressed as the ratio of integers$$
\sqrt{7}, \pi,-0.23223222322223 \ldots
$$

Real Numbers

The set of all rational and irrational numbers

Complex Numbers

Real Numbers

Imaginary
Numbers

The set of all real and imaginary numbers

Complex Number

$a \pm b i$

a and b are real numbers and $i=\sqrt{-1}$

A complex number consists of both real (a) and imaginary (bi) but either part can be 0

Case	Example
$a=0$	$0.01 i,-i, \frac{2 i}{5}$
$b=0$	$\sqrt{5}, 4,-12.8$
$a \neq 0, b \neq 0$	$39-6 i,-2+\pi i$

Absolute Value

$$
|5|=5 \quad|-5|=5
$$

The distance between a number and zero

Order of Operations

Expression

$$
\begin{gathered}
x \\
-\sqrt{26} \\
3^{4}+2 m \\
3(y+3.9)^{2}-\frac{8}{9}
\end{gathered}
$$

Variable

$2(y+\sqrt{3})$

Coefficient

$$
(-4)+2 x
$$

$$
-7 y^{2}
$$

$$
\frac{2}{3} a b-\frac{1}{2}
$$

Term

3 terms

2 terms

1 term

Scientific Notation

$a \times 10^{n}$

$1 \leq|a|<10$ and n is an integer

Examples:

Standard Notation	Scientific Notation
$17,500,000$	1.75×10^{7}
$-84,623$	-8.4623×10^{4}
0.0000026	2.6×10^{-6}
-0.080029	-8.0029×10^{-2}

Exponential Form

factors

Examples:

$$
\begin{gathered}
2 \cdot 2 \cdot 2=2^{3}=8 \\
n \cdot n \cdot n \cdot n=n^{4} \\
3 \cdot 3 \cdot 3 \cdot x \cdot x=3^{3} x^{2}=27 x^{2}
\end{gathered}
$$

Negative Exponent

$$
a^{-n}=\frac{1}{a^{n}}, a \neq 0
$$

Examples:

$$
\begin{gathered}
4^{-2}=\frac{1}{4^{2}}=\frac{1}{16} \\
\frac{x^{4}}{y^{-2}}=\frac{x^{4}}{\frac{1}{y^{2}}}=\frac{x^{4}}{\frac{1}{y^{2}}} \cdot \frac{y^{2}}{y^{2}}=x^{4} y^{2} \\
(2-a)^{-2}=\frac{1}{(2-a)^{2}}, a \neq 2
\end{gathered}
$$

Zero Exponent

$$
a^{0}=1, a \neq 0
$$

Examples:

$$
\begin{gathered}
(-5)^{0}=1 \\
(3 x+2)^{0}=1 \\
\left(x^{2} y^{-5} z^{8}\right)^{0}=1 \\
4 m^{0}=4 \cdot 1=4
\end{gathered}
$$

Product of Powers

$$
\begin{aligned}
& \text { Property } \\
& a^{m} \cdot a^{n}=a^{m+n}
\end{aligned}
$$

Examples:

$$
\begin{gathered}
x^{4} \cdot x^{2}=x^{4+2}=x^{6} \\
a^{3} \cdot a=a^{3+1}=a^{4} \\
w^{7} \cdot w^{-4}=w^{7+(-4)}=w^{3}
\end{gathered}
$$

Power of a Power

Property

$$
\left(a^{m}\right)^{n}=a^{m \cdot n}
$$

Examples:

$$
\begin{gathered}
\left(y^{4}\right)^{2}=y^{4 \cdot 2}=y^{8} \\
\left(g^{2}\right)^{-3}=g^{2 \cdot(-3)}=g^{-6}=\frac{1}{g^{6}}
\end{gathered}
$$

Power of a Product

Property

$$
(a b)^{m}=a^{m} \cdot b^{m}
$$

Examples:

$$
\begin{gathered}
(-3 a b)^{2}=(-3)^{2} \cdot a^{2} \cdot b^{2}=9 a^{2} b^{2} \\
\frac{-1}{(2 x)^{3}}=\frac{-1}{2^{3} \cdot x^{3}}=\frac{-1}{8 x^{3}}
\end{gathered}
$$

Quotient of Powers

Property

$$
\frac{a^{m}}{a^{n}}=a^{m-n}, a \neq 0
$$

Examples:

$$
\begin{aligned}
& \frac{x^{6}}{x^{5}}=x^{6-5}=x^{1}=x \\
& \frac{y^{-3}}{y^{-5}}=y^{-3-(-5)}=y^{2} \\
& \frac{a^{4}}{a^{4}}=a^{4-4}=a^{0}=1
\end{aligned}
$$

Power of Quotient

Property

$$
\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}, b \neq 0
$$

Examples:

$$
\begin{gathered}
\left(\frac{y}{3}\right)^{4}=\frac{y^{4}}{3^{4}} \\
\left(\frac{5}{t}\right)^{-3}=\frac{5^{-3}}{t^{-3}}=\frac{\frac{1}{5^{3}}}{\frac{1}{t^{3}}}=\frac{t^{3}}{5^{3}}=\frac{t^{3}}{125}
\end{gathered}
$$

Polynomial

Example	Name	Terms
7	monomial	1 term
$6 x$		
$3 t-1$	binomial	2 terms
$12 x y^{3}+5 x^{4} y$		
$2 x^{2}+3 x-7$	trinomial	3 terms

Nonexample	Reason
$5 m^{n}-8$	variable exponent
$n^{-3}+9$	negative exponent

Degree of a Polynomial

The largest exponent or the largest sum of exponents of a term within a polynomial

Example:

$$
6 a^{3}+3 a^{2} b^{3}-21
$$

Term	Degree
$6 a^{3}$	3
$3 a^{2} b^{3}$	5
-21	0

Degree of polynomial:
 5

Leading Coefficient

The coefficient of the first term of a polynomial written in descending order of exponents

Examples:

$$
\begin{gathered}
7 a^{3}-2 a^{2}+8 a-1 \\
-3 n^{3}+7 n^{2}-4 n+10 \\
16 t-1
\end{gathered}
$$

Add Polynomials

Combine like terms.

Example:

$$
\begin{aligned}
& \left(2 g^{2}+6 g-4\right)+\left(g^{2}-g\right) \\
= & 2 g^{2}+6 g-4+g^{2}-g \\
& (\text { Group like terms and add.) } \\
= & \left(2 g^{2}+g^{2}\right)+(6 g-g)-4 \\
= & 3 g^{2}+5 g^{2}-4
\end{aligned}
$$

Add Polynomials

Combine like terms.

Example:

$$
\left(2 g^{3}+6 g^{2}-4\right)+\left(g^{3}-g-3\right)
$$

(Align like terms and add.)

$$
\begin{array}{r}
2 g^{3}+6 g^{2}-4 \\
+\quad g^{3}-g-3 \\
\hline 3 g^{3}+6 g^{2}-g-7
\end{array}
$$

Subtract Polynomials

Add the inverse.

Example:

$$
\left(4 x^{2}+5\right)-\left(-2 x^{2}+4 x-7\right)
$$

(Add the inverse.)

$$
\begin{aligned}
& =\left(4 x^{2}+5\right)+\left(2 x^{2}-4 x+7\right) \\
& =4 x^{2}+5+2 x^{2}-4 x+7
\end{aligned}
$$

(Group like terms and add.)

$$
\begin{aligned}
& =\left(4 x^{2}+2 x^{2}\right)-4 x+(5+7) \\
& =6 x^{2}-4 x+12
\end{aligned}
$$

Subtract Polynomials

Add the inverse.

Example:

$$
\left(4 x^{2}+5\right)-\left(-2 x^{2}+4 x-7\right)
$$

(Align like terms then add the inverse and add the like terms.)

$$
\begin{gathered}
4 x^{2}+5 \\
-\left(2 x^{2}+4 x-7\right)
\end{gathered} \rightarrow+\frac{4 x^{2}+5}{6 x^{2}-4 x+7}
$$

Multiply Polynomials

Apply the distributive property.

$$
\begin{aligned}
& (a+b)(d+e+f) \\
& (a+b)(d+e+f) \\
= & a(d+e+f)+b(d+e+f) \\
= & a d+a e+a f+b d+b e+b f
\end{aligned}
$$

Multiply Binomials

Apply the distributive property.

$$
\begin{gathered}
(a+b)(c+d)= \\
a(c+d)+b(c+d)= \\
a c+a d+b c+b d
\end{gathered}
$$

Example: $(x+3)(x+2)$

$$
\begin{aligned}
& =x(x+2)+3(x+2) \\
& =x^{2}+2 x+3 x+6 \\
& =x^{2}+5 x+6
\end{aligned}
$$

Multiply Binomials

Apply the distributive property.

Example: $(x+3)(x+2)$

Multiply Binomials

Apply the distributive property.

Example: $(x+8)(2 x-3)$

$$
=(x+8)(2 x+-3)
$$

$$
2 x+-3
$$

$$
\begin{array}{l|c|c|}
\hline x \\
\cline { 2 - 3 } & 2 x^{2} & -3 x \\
\hline 8 & 8 x & -24 \\
\hline
\end{array}
$$

$2 x^{2}+8 x+-3 x+-24=2 x^{2}+5 x-24$

Multiply Binomials:

 Squaring a Binomial$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a-b)^{2}=a^{2}-2 a b+b^{2}
\end{aligned}
$$

Examples:

$$
\begin{gathered}
(3 m+n)^{2}=9 m^{2}+2(3 m)(n)+n^{2} \\
=9 m^{2}+6 m n+n^{2} \\
(y-5)^{2}=y^{2}-2(5)(y)+25 \\
=y^{2}-10 y+25
\end{gathered}
$$

Multiply Binomials: Sum and Difference

$$
(a+b)(a-b)=a^{2}-b^{2}
$$

Examples:

$$
\begin{aligned}
(2 b+5)(2 b-5) & =4 b^{2}-25 \\
(7-w)(7+w) & =49+7 w-7 w-w^{2} \\
& =49-w^{2}
\end{aligned}
$$

Factors of a Monomial

The numbers) and/or variables) that are multiplied together to form a monomial

Examples:	Factors	Expanded Form
$5 b^{2}$	$5 \cdot b^{2}$	$5 \cdot b \cdot b$
$6 x^{2} y$	$6 \cdot x^{2} \cdot y$	$2 \cdot 3 \cdot x \cdot x \cdot y$
$\frac{-5 p^{2} q^{3}}{2}$	$\frac{-5}{2} \cdot p^{2} \cdot q^{3}$	$\frac{1}{2} \cdot(-5) \cdot p \cdot p \cdot q \cdot q \cdot q$

Factoring: Greatest Common Factor

Find the greatest common factor (GCF) of all terms of the polynomial and then apply the distributive property.

$$
\begin{aligned}
& \text { Example: } \quad 20 a^{4}+8 a \\
& \begin{array}{c}
\text { (2).(2) } 5 \cdot(a) \cdot a \cdot a \cdot a+(2) \cdot(2) \cdot 2 \cdot(a) \\
\text { CF }=\overbrace{2 \cdot 2 \cdot a}=4 a \\
20 a^{4}+8 a=4 a\left(5 a^{3}+2\right)
\end{array}
\end{aligned}
$$

Factoring: Perfect

Square Trinomials

$$
\begin{aligned}
& a^{2}+2 a b+b^{2}=(a+b)^{2} \\
& a^{2}-2 a b+b^{2}=(a-b)^{2}
\end{aligned}
$$

Examples:

$$
\begin{aligned}
x^{2}+6 x+9 & =x^{2}+2 \cdot 3 \cdot x+3^{2} \\
& =(x+3)^{2} \\
4 x^{2}-20 x+25 & =(2 x)^{2}-2 \cdot 2 x \cdot 5+5^{2} \\
& =(2 x-5)^{2}
\end{aligned}
$$

Factoring: Difference

of Two Squares

$$
a^{2}-b^{2}=(a+b)(a-b)
$$

Examples:

$$
\begin{aligned}
& x^{2}-49=x^{2}-7^{2}=(x+7)(x-7) \\
& 4-n^{2}=2^{2}-n^{2}=(2-n)(2+n) \\
& 9 x^{2}-25 y^{2}= \\
& =(3 x)^{2}-(5 y)^{2} \\
& \\
& =(3 x+5 y)(3 x-5 y)
\end{aligned}
$$

Factoring: Sum and Difference of Cubes

$$
\begin{aligned}
& a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \\
& a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)
\end{aligned}
$$

Examples:

$$
\begin{aligned}
27 y^{3}+1 & =(3 y)^{3}+(1)^{3} \\
& =(3 y+1)\left(9 y^{2}-3 y+1\right) \\
x^{3}-64 & =x^{3}-4^{3}=(x-4)\left(x^{2}+4 x+16\right)
\end{aligned}
$$

Difference of Squares

$$
a^{2}-b^{2}=(a+b)(a-b)
$$

Divide Polynomials

Divide each term of the dividend by the monomial divisor

Example:

$$
\begin{aligned}
&\left(12 x^{3}-36 x^{2}+16 x\right) \div 4 x \\
&=\frac{12 x^{3}-36 x^{2}+16 x}{4 x} \\
&=\frac{12 x^{3}}{4 x}-\frac{36 x^{2}}{4 x}+\frac{16 x}{4 x} \\
&=3 x^{2}-9 x+4
\end{aligned}
$$

Divide Polynomials by Binomials

Factor and simplify

Example:

$$
\begin{aligned}
&\left(7 w^{2}+3 w-4\right) \div(w+1) \\
&=\frac{7 w^{2}+3 w-4}{w+1} \\
&=\frac{(7 w-4)(w+1)}{w+1} \\
&=7 w-4
\end{aligned}
$$

Prime Polynomial

Cannot be factored into a product of lesser degree polynomial factors

Example
r
$3 t+9$
$x^{2}+1$
$5 y^{2}-4 y+3$

Nonexample	Factors
$x^{2}-4$	$(x+2)(x-2)$
$3 x^{2}-3 x+6$	$3(x+1)(x-2)$
x^{3}	$x \cdot x^{2}$

Square Root

radical symbol

Simply square root expressions.

Examples:

$$
\begin{aligned}
& \sqrt{9 x^{2}}=\sqrt{3^{2} \cdot x^{2}}=\sqrt{(3 x)^{2}}=3 x \\
&-\sqrt{(x-3)^{2}}=-(x-3)=-x+3
\end{aligned}
$$

Squaring a number and taking a square root are inverse operations.

Cube Root

Simplify cube root expressions.

Examples:

$$
\begin{gathered}
\sqrt[3]{64}=\sqrt[3]{4^{3}}=4 \\
\sqrt[3]{-27}=\sqrt[3]{(-3)^{3}}=-3 \\
\sqrt[3]{x^{3}}=x
\end{gathered}
$$

Cubing a number and taking a cube root are inverse operations.

$n^{\text {th }}$ Root

Examples:

$$
\begin{aligned}
& \sqrt[5]{64}=\sqrt[5]{4^{3}}=4^{\frac{3}{5}} \\
& \sqrt[6]{729 x^{9} y^{6}}=3 x^{\frac{3}{2}} y
\end{aligned}
$$

Product Property of Radicals

The square root of a product equals the product of the square roots of the factors.

$$
\begin{gathered}
\sqrt{a b}=\sqrt{a} \cdot \sqrt{b} \\
a \geq 0 \text { and } b \geq 0
\end{gathered}
$$

Examples:

$$
\begin{gathered}
\sqrt{4 x}=\sqrt{4} \cdot \sqrt{x}=2 \sqrt{x} \\
\sqrt{5 a^{3}}=\sqrt{5} \cdot \sqrt{a^{3}}=a \sqrt{5 a} \\
\sqrt[3]{16}=\sqrt[3]{8 \cdot 2}=\sqrt[3]{8} \cdot \sqrt[3]{2}=2 \sqrt[3]{2}
\end{gathered}
$$

Quotient Property of Radicals

The square root of a quotient equals the quotient of the square roots of the numerator and denominator.

$$
\begin{aligned}
& \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}} \\
& a \geq 0 \text { and } b>0
\end{aligned}
$$

Example:

$$
\sqrt{\frac{5}{y^{2}}}=\frac{\sqrt{5}}{\sqrt{y^{2}}}=\frac{\sqrt{5}}{y}, y \neq 0
$$

$$
\begin{gathered}
\text { Zero Product } \\
\text { Property } \\
\text { If } a b=0 \text {, } \\
\text { then } a=0 \text { or } b=0 \text {. }
\end{gathered}
$$

Example:

$$
\begin{gathered}
(x+3)(x-4)=0 \\
(x+3)=0 \text { or }(x-4)=0 \\
x=-3 \text { or } x=4
\end{gathered}
$$

The solutions are -3 and 4, also
 called roots of the equation.

Solutions or Roots

$$
x^{2}+2 x=3
$$

Solve using the zero product property.

$$
\begin{gathered}
x^{2}+2 x-3=0 \\
(x+3)(x-1)=0 \\
x+3=0 \quad \text { or } \quad x-1=0 \\
x=-3 \text { or } x=1
\end{gathered}
$$

The solutions or roots of the polynomial equation are -3 and 1 .

Zeros

The zeros of a function $f(x)$ are the values of x where the function is equal to zero.

$$
\begin{gathered}
f(x)=x^{2}+2 x-3 \\
\text { Find } f(x)=0 \\
0=x^{2}+2 x-3 \\
0=(x+3)(x-1) \\
x=-3 \text { or } x=1
\end{gathered}
$$

The zeros are -3 and 1
 located at $(-3,0)$ and $(1,0)$.

The zeros of a function are also the solutions or roots of the related equation.

x-Intercepts

The x-intercepts of a graph are located where the graph crosses the x-axis and where $f(x)=0$.

$$
\begin{aligned}
& f(x)=x^{2}+2 x-3 \\
& 0=(x+3)(x-1) \\
& 0=x+3 \text { or } 0=x-1 \\
& x=-3 \text { or } x=1 \\
& \text { The zeros are }-3 \text { and } 1 \text {. } \\
& \text { The } x \text {-intercepts are: } \\
& \quad \bullet-3 \text { or }(-3,0) \\
& \bullet 1 \text { or }(1,0)
\end{aligned}
$$

Coordinate Plane

Linear Equation

$$
\mathrm{A} x+\mathrm{By}=\mathrm{C}
$$

(A, B and C are integers; A and B cannot both equal zero.)

Example:

$$
-2 x+y=-3
$$

The graph of the linear equation is a straight line and represents all solutions (x, y) of the equation.

Linear Equation: Standard Form

$$
\mathrm{A} x+\mathrm{By} y=\mathrm{C}
$$

(A, B, and C are integers; A and B cannot both equal zero.)

Examples:

$$
\begin{gathered}
4 x+5 y=-24 \\
x-6 y=9
\end{gathered}
$$

Literal Equation

A formula or equation which consists primarily of variables

Examples:

$$
\begin{gathered}
a x+b=c \\
A=\frac{1}{2} b h \\
V=l w h \\
F=\frac{9}{5} C+32 \\
A=\pi r^{2}
\end{gathered}
$$

Vertical Line

$$
x=\mathrm{a}
$$

(where a can be any real number)

Example:
 $$
x=-4
$$

Vertical lines have an undefined slope.

Horizontal Line

$$
y=c
$$

(where c can be any real number)

Example:
 $$
y=6
$$

Horizontal lines have a slope of 0.

Quadratic Equation

$$
a x^{2}+b x+c=0
$$

Example: $x^{2}-6 x+8=0$

 Solve by factoring Solve by graphingGraph the related
$x^{2}-6 x+8=0$

$$
\begin{gathered}
(x-2)(x-4)=0 \\
(x-2)=0 \text { or }(x-4)=0 \\
x=2 \text { or } x=4
\end{gathered}
$$

$$
\text { function } f(x)=x^{2}-6 x+8
$$

Solutions to the equation are 2 and 4;

 the x-coordinates where the curve crosses the x-axis.
Quadratic Equation

$$
a x^{2}+\underset{\substack{a \\ a \neq 0}}{b x}+c=0
$$

Example solved by factoring:

$x^{2}-6 x+8=0$	Quadratic equation
$(x-2)(x-4)=0$	Factor
$(x-2)=0$ or $(x-4)=0$	Set factors equal to 0
$x=2$ or $x=4$	Solve for x

Solutions to the equation are 2 and 4.

Quadratic Equation

$$
a x^{2}+b x+c=0
$$

Example solved by graphing:

$$
x^{2}-6 x+8=0
$$

Graph the related function

$$
f(x)=x^{2}-6 x+8
$$

Solutions to the equation are the x-coordinates (2 and 4) of the points where the curve crosses the x-axis.

Quadratic Equation: Number of Real Solutions

Examples	Graphs	Number of Real Solutions/Roots
$x^{2}-x=3$		2
$x^{2}+16=8 x$		1 distinct root with a multiplicity of two
$2 x^{2}-2 x+3=0$		0

Identity Property of Addition

$$
a+0=0+a=a
$$

Examples:

$$
\begin{gathered}
3.8+0=3.8 \\
6 x+0=6 x \\
0+(-7+r)=-7+r
\end{gathered}
$$

Zero is the additive identity.

Inverse Property of Addition

$$
a+(-a)=(-a)+a=0
$$

Examples:

$$
\begin{gathered}
4+(-4)=0 \\
0=(-9.5)+9.5 \\
x+(-x)=0 \\
0=3 y+(-3 y)
\end{gathered}
$$

Commutative

Property of Addition
 $$
a+b=b+a
$$

Examples:

$$
\begin{aligned}
2.76+3 & =3+2.76 \\
x+5 & =5+x \\
(a+5)-7 & =(5+a)-7 \\
11+(b-4) & =(b-4)+11
\end{aligned}
$$

Associative Property

of Addition

$$
(a+b)+c=a+(b+c)
$$

Examples:

$$
\begin{aligned}
& \left(5+\frac{3}{5}\right)+\frac{1}{10}=5+\left(\frac{3}{5}+\frac{1}{10}\right) \\
& 3 x+(2 x+6 y)=(3 x+2 x)+6 y
\end{aligned}
$$

Identity Property of
 Multiplication
 $$
a \cdot 1=1 \cdot a=a
$$

Examples:

$$
\begin{gathered}
3.8(1)=3.8 \\
6 x \cdot 1=6 x \\
1(-7)=-7
\end{gathered}
$$

One is the multiplicative identity.

Inverse Property of Multiplication
 $$
a \cdot \frac{1}{a}=\frac{1}{\substack{a \\ a \neq 0}} \cdot a=1
$$

Examples:

$$
\begin{gathered}
7 \cdot \frac{1}{7}=1 \\
\frac{5}{x} \cdot \frac{x}{5}=1, x \neq 0 \\
\frac{-1}{3} \cdot(-3 p)=1 p=p
\end{gathered}
$$

The multiplicative inverse of a is $\frac{1}{a}$.

Commutative

Property of
 Multiplication

$$
a b=b a
$$

Examples:

$$
\begin{aligned}
(-8)\left(\frac{2}{3}\right) & =\left(\frac{2}{3}\right)(-8) \\
y \cdot 9 & =9 \cdot y \\
4(2 x \cdot 3) & =4(3 \cdot 2 x) \\
8+5 x & =8+x \cdot 5
\end{aligned}
$$

Associative Property

of Multiplication

$$
(a b) c=a(b c)
$$

Examples:

$$
\begin{gathered}
(1 \cdot 8) \cdot 3 \frac{3}{4}=1 \cdot\left(8 \cdot 3 \frac{3}{4}\right) \\
(3 x) x=3(x \cdot x)
\end{gathered}
$$

Distributive Property
 $$
a(b+c)=a b+a c
$$

Examples:

$$
\begin{gathered}
5\left(y-\frac{1}{3}\right)=(5 \cdot y)-\left(5 \cdot \frac{1}{3}\right) \\
2 \cdot x+2 \cdot 5=2(x+5) \\
3.1 a+(1)(a)=(3.1+1) a
\end{gathered}
$$

Distributive Property

$$
4(y+2)=4 y+4(2)
$$

$$
\begin{aligned}
& \text { Multiplicative } \\
& \text { Property of Zero } \\
& a \cdot 0=0 \text { or } 0 \cdot a=0
\end{aligned}
$$

Examples:

$$
\begin{gathered}
8_{3}^{\frac{2}{3}} \cdot 0=0 \\
0 \cdot(-13 y-4)=0
\end{gathered}
$$

Substitution Property

If $a=b$, then b can replace a in a given equation or inequality.

\section*{Examples:
 | Given | Given | Substitution |
| :---: | :---: | :---: |
| $r=9$ | $3 r=27$ | $3(9)=27$ |
| $b=5 a$ | $24<b+8$ | $24<5 a+8$ |
| $y=2 x+1$ | $2 y=3 x-2$ | $2(2 x+1)=3 x-2$ |}

Reflexive Property of Equality
 $a=a$ a is any real number

Examples:

$$
\begin{aligned}
-4 & =-4 \\
3.4 & =3.4 \\
9 y & =9 y
\end{aligned}
$$

Symmetric Property of Equality
 If $a=b$, then $b=a$.

Examples:

$$
\begin{gathered}
\text { If } 12=r \text {, then } r=12 \\
\text { If }-14=z+9, \text { then } z+9=-14 \\
\text { If } 2.7+y=x \text {, then } x=2.7+y
\end{gathered}
$$

Transitive Property

of Equality

$$
\begin{gathered}
\text { If } a=b \text { and } b=c, \\
\text { then } a=c .
\end{gathered}
$$

Examples:

$$
\begin{gathered}
\text { If } 4 x=2 y \text { and } 2 y=16 \\
\text { then } 4 x=16 \\
\text { If } x=y-1 \text { and } y-1=-3 \\
\text { then } x=-3
\end{gathered}
$$

Inequality

An algebraic sentence comparing two quantities

Symbol	Meaning
$<$	less than
\leq	less than or equal to
$>$	greater than
\geq	greater than or equal to
\neq	not equal to

Examples:

$$
\begin{gathered}
-10.5>-9.9-1.2 \\
8>3 t+2 \\
x-5 y \geq-12 \\
r \neq 3
\end{gathered}
$$

Graph of an Inequality

Symbol	Examples	Graph
$<$ or $>$	$x<3$	$\leftarrow 4+1+1-4+1$

Transitive Property of Inequality

If	Then
$a<b$ and $b<c$	$a<c$
$a>b$ and $b>c$	$a>c$

Examples:

$$
\begin{gathered}
\text { If } 4 x<2 y \text { and } 2 y<16 \\
\text { then } 4 x<16 \\
\text { If } x>y-1 \text { and } y-1>3 \\
\text { then } x>3
\end{gathered}
$$

Addition/Subtraction Property of Inequality

If	Then
$a>b$	$a+c>b+c$
$a \geq b$	$a+c \geq b+c$
$a<b$	$a+c<b+c$
$a \leq b$	$a+c \leq b+c$

Example:

$$
\begin{aligned}
& d-1.9 \geq-8.7 \\
& d-1.9+1.9 \geq-8.7+1.9 \\
& d \geq-6.8
\end{aligned}
$$

Multiplication
 Property of Inequality

If	Case	Then
$a<b$	$c>0$, positive	$a c<b c$
$a>b$	$c>0$, positive	$a c>b c$
$a<b$	$c<0$, negative	$a c>b c$
$a>b$	$c<0$, negative	$a c<b c$

Example: if $c=-2$

$$
5>-3
$$

$$
\begin{gathered}
5(-2)<-3(-2) \\
-10<6
\end{gathered}
$$

Division Property of Inequality

If	Case	Then
$\mathrm{a}<\mathrm{b}$	$\mathrm{c}>0$, positive	$\frac{a}{c}<\frac{b}{c}$
$\mathrm{a}>\mathrm{b}$	$\mathrm{c}>0$, positive	$\frac{a}{c}>\frac{b}{c}$
$\mathrm{a}<\mathrm{b}$	$\mathrm{c}<0$, negative	$\frac{a}{c}>\frac{b}{c}$
$\mathrm{a}>\mathrm{b}$	$\mathrm{c}<0$, negative	$\frac{a}{c}<\frac{b}{c}$

Example: if $\mathrm{c}=-4$

$$
\begin{aligned}
& -90 \geq-4 t \\
& \frac{-90}{-4} \leq \frac{-4 t}{-4} \\
& 22.5 \leq t
\end{aligned}
$$

Linear Equation:

Slope-Intercept Form $y=m x+b$ (slope is m and y -intercept is b)

Example: $y=\frac{-4}{3} x+5$

$$
\begin{aligned}
& m=\frac{-4}{3} \\
& b=-5
\end{aligned}
$$

Linear Equation:

 Point-Slope Form

 Point-Slope Form}

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

where m is the slope and $\left(x_{1}, y_{1}\right)$ is the point

Example:

Write an equation for the line that passes through the point $(-4,1)$ and has a slope of 2 .

$$
\begin{gathered}
y-1=2(x--4) \\
y-1=2(x+4) \\
y=2 x+9
\end{gathered}
$$

Slope

A number that represents the rate of change in y for a unit change in x

Slope $=\frac{2}{3}$

The slope indicates the steepness of a line.

Slope Formula

The ratio of vertical change to horizontal change

slope $=\mathrm{m}=\frac{\text { change in } y}{\text { change in } x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Slopes of Lines

Line p
has a positive slope.

Line n
has a negative slope.

$\begin{aligned} & \text { Vertical line } s \text { has } \\ & \text { an undefined } \\ & \text { slope. }\end{aligned}$
$\begin{gathered}\text { Horizontal line } t\end{gathered}$
$\begin{gathered}\text { Heser } \\ \text { has a zero slope. }\end{gathered}$

Perpendicular Lines

Lines that intersect to form a right angle

Perpendicular lines (not parallel to either of the axes) have slopes whose product is -1 .

Example:

The slope of line $n=-2$. The slope of line $p=\frac{1}{2}$. $-2 \cdot \frac{1}{2}=-1$, therefore, n is perpendicular to p.

Parallel Lines

Lines in the same plane that do not intersect are parallel. Parallel lines have the same slopes.

Example:

> The slope of line $a=-2$.
> The slope of line $b=-2$. $-2=-2$, therefore, a is parallel to b.

Mathematical

Notation

Set Builder Notation	Read	Other Notation
$\{x \mid 0<x \leq 3\}$	The set of all x such that x is greater than or equal to 0 and x is less than 3.	$(0,3]$
$\{y: y \geq-5\}$	The set of all y such that y is greater than or equal to -5.	$[-5, \infty)$

System of Linear

Equations

Solve by graphing:

$$
\left\{\begin{array}{l}
-x+2 y=3 \\
2 x+y=4
\end{array}\right.
$$

The solution, $(1,2)$, is the only ordered pair that satisfies both equations
(the point of intersection).

System of Linear Equations

Solve by substitution:

$$
\left\{\begin{array}{l}
x+4 y=17 \\
y=x-2
\end{array}\right.
$$

Substitute $x-2$ for y in the first equation.

$$
\begin{gathered}
x+4(x-2)=17 \\
x=5
\end{gathered}
$$

Now substitute 5 for x in the second equation.

$$
\begin{gathered}
y=5-2 \\
y=3
\end{gathered}
$$

The solution to the linear system is $(5,3)$, the ordered pair that satisfies both equations.

System of Linear

Equations

Solve by elimination:

$$
\left\{\begin{array}{r}
-5 x-6 y=8 \\
5 x+2 y=4
\end{array}\right.
$$

Add or subtract the equations to eliminate one variable.

$$
\begin{aligned}
-5 x-6 y & =8 \\
+5 x+2 y & =4 \\
\hline-4 y & =12 \\
y & =-3
\end{aligned}
$$

Now substitute -3 for y in either original equation to find the value of x, the eliminated variable.

$$
\begin{array}{r}
-5 x-6(-3)=8 \\
x=2
\end{array}
$$

The solution to the linear system is $(2,-3)$, the ordered pair that satisfies both equations.

System of Linear

Equations

Identifying the Number of Solutions

Number of Solutions	Slopes and y-intercepts	
One solution	Different slopes	
No solution	Same slope and different $y-$ intercepts	
Infinitely many solutions	Same slope and same $y-$ intercepts	

Linear - Quadratic

System of Equations

$$
\left\{\begin{array}{l}
y=x+1 \\
y=x^{2}-1
\end{array}\right.
$$

The solutions,
$(-1,0)$ and (2,3), are the only ordered pairs
that satisfy both equations (the points of intersection).

Graphing Linear Inequalities

Example	Graph
$y \leq x+2$	
$y>-x-1$	

System of Linear Inequalities

Solve by graphing:
 $$
\left\{\begin{array}{l} y>x-3 \\ y \leq-2 x+3 \end{array}\right.
$$

The solution region contains all ordered pairs that are solutions to both inequalities in the system.
$(-1,1)$ is one solution to the system located in the solution region.

Dependent and Independent Variable

x, independent variable (input values or domain set)

Example:

$$
y=2 x+7
$$

$$
\begin{aligned}
& y, \text { dependent variable } \\
& \text { (output values or range set) }
\end{aligned}
$$

Dependent and Independent Variable

Determine the distance a car will travel going 55 mph .

$$
d=55 h
$$

Graph of a Quadratic

Equation

$$
y=a x^{2}+b x+c
$$

Example:

$$
y=x^{2}+2 x-3
$$

line of symmetry

The graph of the quadratic equation is a curve (parabola) with one line of symmetry and one vertex.

Quadratic Formula

Used to find the solutions to

any quadratic equation of the

$$
\text { form, } y=a x^{2}+b x+c
$$

$$
x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}
$$

Relations

Representations of relationships

x	y
-3	4
0	0
1	-6
2	2
5	-1

Example 1

$\{(0,4),(0,3),(0,2),(0,1)\}$

Example 3

Functions

Representations of functions

x	y
3	2
2	4
0	2
-1	2

Example 1
$\{(-3,4),(0,3),(1,2),(4,6)\}$
Example 3

Example 4

Function

A relationship between two quantities in which every input corresponds to exactly one output

A relation is a function if and only if each element in the domain is paired with a unique element of the range.

Domain

A set of input values of a relation

Examples:

input	output
\boldsymbol{x}	$\boldsymbol{g}(\boldsymbol{x})$
-2	$\mathbf{0}$
-1	$\mathbf{1}$
0	$\mathbf{2}$
1	$\mathbf{3}$

The domain of $g(x)$ is $\{-2,-1,0,1\}$.

The domain of $f(x)$ is all real numbers.

Range

A set of output values of a relation

Examples:

The range of $\mathrm{g}(\mathrm{x})$ is $\{0,1,2,3\}$.

The range of $f(x)$ is all real numbers greater than or equal to zero.

Function Notation

$f(x)$

$f(x)$ is read

"the value of f at x " or " f of x "
Example:

$$
\begin{aligned}
& f(x)=-3 x+5, \text { find } f(2) . \\
& f(2)=-3(2)+5 \\
& f(2)=-6
\end{aligned}
$$

Letters other than f can be used to name functions, e.g., $g(x)$ and $h(x)$

Parent Functions

Linear
 $f(x)=x$

Quadratic
 $f(x)=x^{2}$

Parent Functions

Absolute Value
 $f(x)=|x|$

Square Root

$$
f(x)=\sqrt{x}
$$

Parent Functions

Cubic
 $f(x)=x^{3}$

Cube Root
 $f(x)=\sqrt[3]{x}$

Parent Functions

Rational
 $f(x)=\frac{1}{x}$

Rational
 $f(x)=\frac{1}{x^{2}}$

Parent Functions

Exponential
 $f(x)=b^{x}$
 b>1

Logarithmic
$f(x)=\log _{b} x$

Transformations of

Parent Functions

Parent functions can be transformed to create other members in a family of graphs.

	$g(x)=f(x)+k$ is the graph of $f(x)$ translated vertically -	k units up when $\mathbf{k} \boldsymbol{>} \mathbf{0}$.
		k units down when $\boldsymbol{k}<0$.
	$g(x)=f(x-h)$ is the graph of $f(x)$ translated horizontally -	h units right when $h>0$.
		h units left when $h<0$.

Transformations of

Parent Functions

Parent functions can be transformed to create other members in a family of graphs.

$\begin{aligned} & \text { ■ } \\ & \frac{1}{0} \end{aligned}$	$g(x)=-f(x)$ is the graph of $f(x)-$	reflected over the x-axis.
$\begin{aligned} & 4 \\ & 0 \end{aligned}$	$g(x)=f(-x)$ is the graph of $f(x)-$	reflected over the y-axis.

Transformations of

Parent Functions

Parent functions can be transformed to create other members in a family of graphs.

	$g(x)=a \cdot f(x)$ is the graph of $f(x)-$	vertical dilation (stretch) if $a>1$.
		vertical dilation (compression) if $\mathbf{0}<\boldsymbol{a}<\mathbf{1}$
	$g(x)=f(a x)$ is the graph of $f(x)-$	horizontal dilation (compression) if $a>1$.
		horizontal dilation (stretch) if $0<a<1$.

Transformational

Graphing

Linear functions

$$
g(x)=x+b
$$

Examples:

$$
\begin{aligned}
& f(x)=x \\
& t(x)=x+4 \\
& h(x)=x-2
\end{aligned}
$$

Vertical translation of the parent function,

$$
f(x)=x
$$

Transformational

$$
\begin{aligned}
& \text { Graphing } \\
& \text { Linear functions }
\end{aligned}
$$

$$
\begin{gathered}
g(x)=m x \\
m>0
\end{gathered}
$$

Examples:

$$
\begin{aligned}
& f(x)=x \\
& t(x)=2 x \\
& h(x)=\frac{1}{2} x
\end{aligned}
$$

Vertical dilation (stretch or compression) of the parent function, $f(x)=x$

Transformational

$$
\begin{aligned}
& \text { Graphing } \\
& \text { Linear functions }
\end{aligned}
$$

$$
\begin{aligned}
g(x) & =m x \\
m & <0
\end{aligned}
$$

Examples:

$$
\begin{aligned}
& f(x)=x \\
& t(x)=-x \\
& h(x)=-3 x \\
& d(x)=\frac{1}{3} x
\end{aligned}
$$

Vertical dilation (stretch or compression) with a reflection of $f(x)=x$

Transformational

$$
\begin{gathered}
\text { Graphing } \\
\text { Quadratic functions } \\
h(x)=x^{2}+c
\end{gathered}
$$

Examples:

$$
\begin{aligned}
& f(x)=x^{2} \\
& g(x)=x^{2}+2 \\
& t(x)=x^{2}-3
\end{aligned}
$$

Vertical translation of $f(x)=x^{2}$

Transformational

$$
\begin{gathered}
\text { Graphing } \\
\text { Quadratic functions } \\
h(x)=a x^{2} \\
a>0
\end{gathered}
$$

Examples:

$$
\begin{aligned}
& f(x)=x^{2} \\
& g(x)=2 x^{2} \\
& t(x)=\frac{1}{3} x^{2}
\end{aligned}
$$

Vertical dilation (stretch or compression) of $f(x)=x^{2}$

Transformational

Graphing

Quadratic functions

$$
\begin{gathered}
h(x)=a x^{2} \\
a<0
\end{gathered}
$$

Examples:

$$
\begin{aligned}
& f(x)=x^{2} \\
& g(x)=-2 x^{2} \\
& t(x)=-\frac{1}{3} x^{2}
\end{aligned}
$$

Vertical dilation (stretch or compression) with a reflection of $f(x)=x^{2}$

Transformational

$$
\begin{aligned}
& \text { Graphing } \\
& \text { Quadratic functions } \\
& h(x)=(x+c)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Examples: } \\
& f(x)=x^{2} \\
& g(x)=(x+2)^{2} \\
& t(x)=(x-3)^{2}
\end{aligned}
$$

Horizontal translation of $f(x)=x^{2}$

Inverse of a Function

The graph of an inverse function is the reflection of the original graph over the line, $y=x$.

Example:
$f(x)=\sqrt{x}$
Domain is restricted to $x \geq 0$.
$f^{-1}(x)=x^{2}$
Domain is restricted to $x \geq 0$.

Restrictions on the domain may be necessary to ensure the inverse relation is also a function.

Discontinuity

Vertical and Horizontal Asymptotes

Example:
$f(x)=\frac{1}{x+2}$
$f(-2)$ is not defined, so
$f(x)$ is discontinuous.

Discontinuity Removable Discontinuity Point Discontinuity

Example:
$f(x)=\frac{x^{2}+x-6}{x-2}$
$f(2)$ is not defined.

x	$f(x)$
-3	0
-2	1
-1	2
0	3
1	4
2	error
3	6

$$
\begin{aligned}
f(x) & =\frac{x^{2}+x-6}{x-2} \\
& =\frac{(x+3)(x-2)}{x-2} \\
& =x+3, x \neq 2
\end{aligned}
$$

Direct Variation

$y=k x$ or $k=\frac{y}{x}$

constant of variation, $k \neq 0$

Example:

$$
y=3 x \text { or } 3=\frac{y}{x}
$$

The graph of all points describing a direct variation is a line passing through the origin.

Inverse Variation

$y=\frac{k}{x}$ or $k=x y$
constant of variation, $k \neq 0$

Example:

$y=\frac{3}{x}$ or $x y=3$

The graph of all points describing an inverse variation relationship are 2 curves that are reflections of each other.

Joint Variation

$$
z=k x y \text { or } k=\frac{z}{x y}
$$

constant of variation, $k \neq 0$

Examples:

Area of a triangle varies jointly as its length of the base, b, and its height, h.

$$
A=\frac{1}{2} b h
$$

For Company $A B C$, the shipping cost in dollars, C, for a package varies jointly as its weight, w, and size, s.

$$
C=2.47 w s
$$

Arithmetic Sequence

A sequence of numbers that has a common difference between every two consecutive terms

\section*{Example: $-\underset{+5+5+5}{4,1,6,11,16} \ldots$
 | Position
 x | Term
 y | common
 difference |
| :---: | :---: | :---: |
| 1 | -4 | +5 |
| 2 | 1 | +5 |
| 3 | 6 | +5 |
| 4 | 11 | +5 |}

The common difference is the slope of the line of best fit.

Geometric Sequence

A sequence of numbers in which each term after the first term is obtained by multiplying the previous term by a constant ratio

Example: $4,2,1,0.5,0.25 \ldots$

$\begin{gathered} \text { Position } \\ x \end{gathered}$	Term	common ratio
1	4	
2	2	
3	1	
4	0.5	
5	0.25	

Probability

The likelihood of an event occurring

probability of an event $=\frac{\text { number of favorable outcomes }}{\text { number of possible outcomes }}$

Example: What is the probability of drawing an A from the bag of letters shown?

Probability of Independent Events

Example:

What is the probability of landing on green on the first spin and then
landing on yellow on the second spin?
$\mathrm{P}($ green and yellow $)=$
$P($ green $) \cdot P($ yellow $)=\frac{3}{8} \cdot \frac{1}{4}=\frac{3}{32}$

Probability of Dependent Events

Example:

What is the probability of selecting a red jelly bean on the first pick and
without replacing it, selecting a blue jelly bean on the second pick?

$$
\mathrm{P}(\text { red }) \cdot \underset{\substack{\mathrm{P} \\ \text { "blued and blue } \mid \text { red }) \\ \text { "blue })}}{ }=\frac{4}{12} \cdot \frac{2}{11}=\frac{8}{132}=\frac{2}{33}
$$ Candy Jar

Fundamental

Counting Principle

-If there are m ways for one event
to occur and n ways for a second event to occur, then there are $m n$ ways for both events to occur.

Example:

How many outfits can Joey make using 3 pairs of pants and 4 shirts?

$$
3 \cdot 4=12 \text { outfits }
$$

Permutation

An ordered arrangement of a group

of objects

Both arrangements are included in possible outcomes.

Example:

5 people to fill 3 chairs (order matters). How many ways can the chairs be filled? $1^{\text {st }}$ chair -5 people to choose from $2^{\text {nd }}$ chair -4 people to choose from $3^{\text {rd }}$ chair -3 people to choose from \# possible arrangements are $5 \cdot 4 \cdot 3=60$

Permutation

To calculate the number of permutations

$$
n^{P_{r}}=\frac{n!}{(n-r)!}
$$

n and r are positive integers, $n \geq r$, and n is the total number of elements in the set and r is the number to be ordered.

Example: There are 30 cars in a car race. The first-, second-, and third-place finishers win a prize. How many different arrangements of the first three positions are possible?

$$
{ }_{30} P_{3}=\frac{30!}{(30-3)!}=\frac{30!}{27!}=24360
$$

Combination

The number of possible ways to select or arrange objects when there is no repetition and order does not matter

Example: If Sam chooses 2 selections from heart, club, spade and diamond. How many different combinations are possible?

Order (position) does not matter so $\underset{\sim}{\otimes}$ is the same as $\boldsymbol{\otimes}$

There are 6 possible combinations.

Combination

To calculate the number of possible combinations using a formula

$$
n^{C_{r}}=\frac{n!}{r!(n-r)!}
$$

n and r are positive integers, $n \geq r$, and n is the total number of elements in the set and r is the number to be ordered.

Example: In a class of 24 students, how many ways can a group of 4 students be arranged?

$$
{ }_{24} \mathrm{C}_{4}=\frac{24!}{4!(24-4)!}=10,626
$$

Statistics Notation

$\boldsymbol{x}_{\boldsymbol{i}}$	$i^{\text {th }}$ element in a data set
$\boldsymbol{\mu}$	mean of the data set
$\boldsymbol{\sigma}^{\mathbf{2}}$	variance of the data set
$\boldsymbol{\sigma}$	standard deviation of the data set
\boldsymbol{n}	number of elements in the data set

Mean

A measure of central tendency

Example:

Find the mean of the given data set.
Data set: $0,2,3,7,8$

Numerical Average

$$
\mu=\frac{0+2+3+7+8}{5}=\frac{20}{5}=4
$$

Median

A measure of central tendency

Examples:

Find the median of the given data sets.

Data set: 6, 7, 8, 9, 9

The median is 8 .

Data set: $5,6, \underbrace{8,9}_{\uparrow}, 11,12$
The median is 8.5.

Mode

A measure of central tendency

Examples:

Data Sets	Mode
$3,4,6,6,6,6,10,11,14$	6
$0,3,4,5,6,7,9,10$	none
$5.2,5.2,5.2,5.6,5.8,5.9,6.0$	5.2
$1,1,2,5,6,7,7,9,11,12$	1,7 bimodal

Box-and-Whisker Plot

A graphical representation of the five-number summary

Summation

This expression means sum the values of x,

 starting at x_{1} and ending at x_{n}.$$
\sum_{i=1}^{n} x_{i}=x_{1}+x_{2}+x_{3}+\ldots+x_{n}
$$

Example: Given the data set $\{3,4,5,5,10,17\}$

$$
\sum_{i=1}^{6} x_{i}=3+4+5+5+10+17=44
$$

Mean Absolute Deviation

A measure of the spread of a data set

$$
\begin{array}{r}
\text { Mean } \\
\text { Absolute } \\
\text { Deviation }
\end{array}=\frac{\sum_{i=1}^{n}\left|x_{i}-\mu\right|}{n}
$$

The mean of the sum of the absolute value of the differences between each element and the mean of the data set

Variance

A measure of the spread of a data set

The mean of the squares of the differences between each element and the mean of the data set

Standard Deviation

A measure of the spread of a data set

standard deviation $(\sigma)=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}{n}}$

The square root of the mean of the squares of the differences between each element and the mean of the data set or the square root of the variance

Standard Deviation

A measure of the spread of a data set

standard deviation $(\sigma)=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}{n}}$

Comparison of two distributions with same mean and different standard deviation values

z-Score

The number of standard deviations an element is away from the mean

$$
\mathrm{z} \text {-score }(\mathrm{z})=\frac{x-\mu}{\sigma}
$$

where x is an element of the data set, μ is the mean of the data set, and σ is the standard deviation of the data set.

Example: Data set A has a mean of 83 and a standard deviation of 9.74. What is the z-score for the element 91 in data set A?

$$
z=\frac{91-83}{9.74}=0.821
$$

z-Score

The number of standard deviations an element is from the mean

σ

Normal Distribution

Elements within One Standard

 Deviation (σ) of the Mean (μ)

Scatterplot

Graphical representation of the relationship between two numerical sets of data

Positive Correlation

In general, a relationship where the dependent (y) values increase as independent values (x) increase

Negative Correlation

In general, a relationship where the dependent (y) values decrease as independent (x) values increase.

Constant Correlation

The dependent (y) values remain about the same as the

 independent (x) values increase.

No Correlation

No relationship between the dependent (y) values and independent (x) values.

Curve of Best Fit

Calories and Fat Content

Height of a Shot Put

Curve of Best Fit

Height of a Shot Put

Outlier Data

